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Abstract. Quantifying the link between microstructure and effective elastic properties of snow, firn, and bubbly ice is essential

for many applications in cryospheric sciences. The microstructure of snow and ice can be characterized by different types

of fabrics (crystallographic, geometrical) that gives rise to macroscopically anisotropic elastic behavior. While the impact

of the crystallographic fabric has been extensively studied in deep firn, the present work investigates the influence of the

geometrical fabric over the entire range of possible volume fractions. To this end we have computed the effective elasticity5

tensor of snow, firn, and ice by finite element simulations based on 395 X-ray tomography images comprising samples from

the laboratory, Alps, Greenland, and Antarctica. We employed a variant of the Eshelby tensor that has been previously utilized

for the parametrization of thermal and dielectric properties of snow and utilized Hashin-Shtrikman bounds to capture the

nonlinear interplay between density and geometrical anisotropy. From that we derive a closed-form parametrization for all

components of the (transverse isotropic) elastic tensor for all volume fractions using 2 fit parameters per tensor component.10

Finally we used the Thomsen parameter to compare the geometrical anisotropy to the crystallographic anisotropy in bubbly

ice. While the geometrical anisotropy is clearly dominating up to ice volume fractions of φ≈ 0.7, a thorough understanding of

elasticity in bubbly ice may require a coupled elastic theory that includes geometrical and crystallographic anisotropy.

1 Introduction15

The elastic modulus is the probably the most fundamental mechanical property of snow, firn or ice and the knowledge of the

effective elasticity tensor plays a crucial role in a variety of applications throughout the field of cryospheric sciences. Examples

comprise micromechanical modeling of snow compaction (Wautier et al., 2016), fracture propagation in weak layers for slab

avalanche release (Gaume et al., 2013; Bobillier et al., 2020), or the interpretation of near-surface (Chaput et al., 2022) or deep

firn (Diez and Eisen, 2015; Diez et al., 2015; Schlegel et al., 2019) seismic signatures through the link between wave velocities20

and elastic moduli.
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In particular the last example (Schlegel et al., 2019) has stressed the role of elastic anisotropy: The retrieval of elasticity

profiles of snow, firn, and ice through seismic waves relies on the assumption of isotropy which constitutes an uncertainty in

the inversion method. Snow and firn are however known to be anisotropic, on one hand with respect to ice matrix geometry

(e.g. Löwe et al., 2013; Calonne et al., 2015; Leinss et al., 2016; Moser et al., 2020; Montagnat et al., 2020), and on the25

other hand with respect to crystallographic orientation. While the geometrical fabric in firn is high near the surface due to

temperature gradient metamorphism (Montagnat et al., 2020) and decays with depth (Fujita et al., 2014), the crystallographic

fabric is low near the surface but increases with depth under densification and flow (e.g. Montagnat et al., 2014; Saruya et al.,

2022). Recent work wave propagation measurements on glacier ice (Hellmann et al., 2021) suggests that already at very low

porosity the effective elastic (crystallographic) anisotropy of polycrystalline ice is already affected by geometrical effects of30

the ice (porosity). For snow, the impact of the geometrical anisotropy has been studied (Srivastava et al., 2016) only in a limited

range of porosities. Thus a parameterization of the elastic modulus, based on density and geometrical anisotropy for the entire

possible range of porosities would constitute a first step towards understanding this concurrent anisotropy probem. This could

have immediate applications e.g. for retrieving sub-surface density, elasticity, and anisotropy through seismics using advanced

inversion methods (Wu et al., 2022).35

The effective elasticity tensor of snow, firn or ice can be directly obtained through numerical homogenization on micro-

tomography images. Using the Finite-Element (FE) method, the solution of the static linear elastic equations yield the effective

elastic properties via volume averaging. Here it is commonly assumed that the ice matrix is isotropic, polycrystalline ice

with known bulk and shear modulus (see Garboczi, 1998; Köchle and Schneebeli, 2014; Wautier et al., 2015). It has been

recently confirmed that the effective elastic properties obtained by microstructure based FE agree well with acoustic mea-40

surements (Gerling et al., 2017). Though straightforward, the microstructure-based FE approach is computationally expensive

and requires the microstructure to be known. Therefore, accurate parametrizations are still highly desirable and presently no

parametrization of the effective elastic modulus exist that can be consistently applied without making a restriction to a limited

range of volume fractions.

As an alternative to numerical simulations, it is often helpful to consider effective medium theories and rigorous approxima-45

tions. Rigorous bounds such as Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1962) can be used to approximate the

elastic properties of porous materials (Torquato, 1991). Although bounds are widely known to be inaccurate predictors of the

elastic properties in absolute value (Roberts and Garboczi, 2002), the HS bounds incorporate the non-linear interplay between

structural anisotropy and density (Torquato, 2002b) and they have the correct limiting behavior for small and large volume

fractions. These properties can be systematically exploited for constructing more sophisticated parametrizations.50

It is the purpose of the present work to derive a parameterization of the effective elasticity tensor of snow, firn, and bubbly

ice based on volume fraction and structural anisotropy that can be consistently applied to the entire range of volume fractions.

This will be achieved by taking the anisotropic HS bounds (containing no free parameter) as functional starting point and

subsequently applying an empirical transformation (containing two fit parameters per tensor component), in order to match

observed characteristic features, namely the power law increase of the moduli for high porosities (for snow) and the asymptotic55

behavior of dilute sphere dispersions (for bubbly ice) in the limit of low porosities.
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The paper is organized as follows. Section 2 gives a theoretical overview of the elasticity tensor, examines the limitation of

existing parameterizations and motivates the methodological idea that underlies the proposed parameterization for the elasticity

tensor. Section 3 presents an overview of the 395 tomography samples that were used, and the methods that are employed to

calculated correlation functions, fabric tensors, FE simulations, and fitting procedures for estimating the free parameters in60

the elasticity formulas. In Sect. 4 we show performance of new parameterization, by comparing it with the above-mentioned

shortcomings of previous work. Finally we discuss in Sect. 5 the expected interplay between crystallographic and geometrical

anisotropy for the elastic modulus for snow, firn, and ice and conclude in Sect. 6.

2 Theoretical background

2.1 The effective elasticity tensor65

Snow is a heterogeneous material where the effective, macroscopic properties can be computed by volume averaging over

a sufficently large volume, known as respresentative volume element (RVE) (see Hill, 1963; Hashin, 1963; Nemat-Nasser

and Hori, 1995; Torquato, 1997; Willis, 1981). The effective (fourth order) elasticity tensor C of a statistically homogenous

two-phase composite material is defined by Hooke’s law of elasticity as

〈σ〉=C : 〈ε〉, (1)70

that relates the volume averaged second-order stress 〈σ〉 and strain tensors 〈ε〉. Angular brackets denote volume averaging and

: denote double contraction (Torquato, 1997). We consider snow to be a transversely isotropic (TI) material, where the axis of

transverse symmetry is chosen as the z-axis perpendicular to the isotropic xy plane. The elasticity tensor of a TI material can

be described by 5 independent moduli. Using Voigt notation, it can be written (Torquato, 2002a) as a symmetric 6× 6 matrix

C =




C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
1
2

(C11−C12)




, (2)75

For an isotropic material the number of independent entries reduces to two e.g. the shear modulus G= C44 and the P-wave

modulusC33. Wherever necessary, the common relations are employed (Torquato, 2002a) to connect to alternative formulations

in terms of Youngs modulus E, bulk modulus K, or Poisson ratio ν.
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To quantify the deviation from elastic isotropy, it is common to use the so called Thomsen parameters ε,γ, and δ, which are

dimensionless quantities defined as (see Thomsen, 1986)80

ε=
C11−C33

2C33

γ =
C66−C44

2C44

δ =
(C13 +C44)2− (C33−C44)2

2C33(C33−C44)
.

(3)

For an isotropic material the Thomsen parameters are zero.

2.2 Isotropic parametrizations based on ice volume fraction

2.2.1 Snow: Power law models

For applications, the elastic moduli must be related to accessible parameters of snow. The most common way are empirical85

parameterizations based on density, or equivalently, ice volume fraction φ. Density based parameterization often state a power

law (Frolov and Fedyukin, 1998; Sigrist, 2006; Gerling et al., 2017) or exponential relationships (Köchle and Schneebeli,

2014; Scapozza, 2004) to comply with the observed drastic increase of elasticity of snow with increasing density. The different

density based parametrizations for low density snow have been compared in many publications (e.g. (Köchle and Schneebeli,

2014). For the purpose of the present paper we choose one example, namely the power-law parameterization from Gerling90

et al. (2017) as it was derived from FE simulations and experiments. We write the parametrization in the form

C G
ij (φ) = aij φ

bij , (4)

where C G
ij are the components of the elasticity tensor, aij and bij are the empirical parameters that need to be estimated by

fitting experimental data. In Gerling et al. (2017) only the 33 component was computed and led to a33 = 6·10−10 and b33 = 4.6

for snow with volume fractions in the range 0.1< φ < 0.4.95

2.2.2 Firn: Kohnen parametrization

A conceptually similar parametrization, however valid for an entirely different range of ice volume fractions, can be inferred

from the parametrization of acoustic wave velocities in firn. Kohnen (1972) has derived an empirical relationship between the S

and P wave velocities in (isotropic) firn and the density. By relating wave velocities to the respective elastic moduli via density,

the Kohnen relations can be cast into a ice volume fraction based parametrization for the S and P wave modulus (33 and 44100

components of the elastic modulus) which are valid in low porosity firn. We rewrite the Kohnen empirical formula in the form

C KOH
ij (φ) = ρ

[
vice
ij −αij

(
1
φ
− 1
)1/βij

]2

, (5)

with the empirical parameters α33 = 2250ms−1, β33 = 1.22, α44 = 950ms−1, and β44 = 1.17, and the P-wave and S-wave

velocities in ice v ice
33 = 3900 and v ice

44 = 2100 given in units ms−1 (Diez, 2013).
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2.2.3 Ice: Exact limit for dilute dispersions of spheres105

For bubbly ice at very low porosities, the air phase can be commonly described as isolated, nearly spherical bubbles (e.g.

Fourteau et al., 2019). This limiting case can be addressed analytically by considering a dilute dispersion of spherical cavities

with vanishing stiffness (K air =G air = 0) in ice. In this limit, the effective elastic modulus C DDS can be computed exactly

(Torquato, 2002a) and, due to isotropy, determined from the effective bulk modulus K DDS and shear modulus GDDS given by

C DDS
ij = 3K DDS(Λh)ij + 2GDDS(Λs)ij ,

K DDS =K ice(1− 3K ice + 4G ice

4G ice (1−φ)),

GDDS =G ice(1− G ice +H ice

H ice (1−φ)),

(6)110

where

H ice ≡G ice(
3K ice/2 + 4G ice/3
K ice + 2G ice ). (7)

Here Λh and Λs are the hydrostatic and shear projection tensors, respectively, defined in (Torquato, 2002a, Eq. 13.96 and

Eq. 13.97) and CDDS
33 component is given by K DDS + 4GDDS/3.

2.3 Anisotropic parametrizations based on ice volume fraction and geometrical fabric115

To overcome the restrictive assumption of isotropic parametrizations it is necessary to extend the microstructural description.

Cowin (1985) showed that the elasticity tensor of porous materials can be estimated, based on symmetry arguments, from the

morphology and the elastic properties of the matrix phase (Moreno et al., 2016). According to Cowin (1985), the elasticity

tensor can be determined as a function of Lamè constants of the porous material, λ and µ, volume fraction φ and the fabric

tensor M which captures the anisotropy of the material (Moreno et al., 2016). For snow this was utilized by Srivastava et al.120

(2016) who used the Zysset–Curnier formulation (Zysset and Curnier, 1995) to incorporate the fabric tensor. This led to a

(orthotropic elastic) formulation of the elasiticy tensor given by

C ZC
ij (φ,M) =

3∑

i=1

(λ+ 2µ)φkm2l
i (M i⊗M i)

−
3∑

i, j=1
i 6=j

λ
′
φkml

im
l
j(M i⊗M j)

+
3∑

i, j=1
i 6=j

2µφkml
im

l
j(M i⊗M j),

(8)

Here mi denotes the i-th eigenvalues of the positive definite fabric-tensor M and M i is the projector on the corresponding

eigenspace. The dependence on the eigenvalues and the ice volume-fraction φ are assumed to be of power-law type character-125

ized by the empirical exponents k and l, respectively. The definition of double tensorial product A⊗B is given by (Srivastava

et al., 2016).
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The fit parameters derived in Srivastava et al. (2016) for this model are given by λ= 5.33,λ
′
= 5.27,µ= 9.54, k = 4.69,

and l = 2.55.

2.4 Anisotropic Hashin-Shtrikman bounds130

An alternative theoretical approach to the anisotropic elasticity of heterogeneous materials can be realized through bounds

(Hashin and Shtrikman, 1962; Torquato, 1991). Hashin–Shtrikman (HS) bounds predict the effective elastic properties of

porous materials based on volume fraction and microstrucural anisotropy, which is incorporated through n-point correlation

functions. This results in tighter bounds over Voigt and Reuss bounds, which are just based on the volume fraction of the

material. As the air phase of the snow microstructure has zero elasticity, only the upper bound [0≤C <C U] is meaningful135

(Roberts and Garboczi, 2002) and it is given by (Torquato, 2002a)

C U =C ice− (1−φ)φC ice : P ice :C ice : [I +φP ice :−C ice ]−1, (9)

where C U represents Hashin-Shtrikman upper bound on effective elastic modulus C, the components of the fourth-order

identity tensor I is given as Ipqrs = (δprδqs + δpsδqr)/2, φ is the volume fractions of ice. The bound involves the elasticity

tensor C ice of ice as the host material, which needs to be isotropic for the derivation of Eq. (9). Such an assumption is140

consistent with our focus on the geometrical, rather than crystallographic, anisotropy and the use of an isotropic material in our

FE simulations (see Sec. 3). The bound thus involves the bulk modulus K ice and shear modulus G ice of ice. The tensor P ice is

the polarization tensor, which incorporates the structural anisotropy through aspect ratio α of the correlation lengths (Torquato,

1997). The tensor P ice is related to the Eshelby tensor S ice (Eshelby and Peierls, 1957) of the matrix phase via the relation

P ice = S ice : [C ice]−1. (10)145

The Eshelby tensor (see Sect. A) in the Hashin-Shtrikman bounds accounts for the anisotropic "shape" of the microstructure

through the geometrical anisotropy ratio α and is the equivalent of the fabric tensor M in the anisotropic ZC model (see

Eq. (8)). A geometrical anisotropy ratioα > 1 corresponds to predominant vertical orientation of ice matrix (prolate inclusions),

α < 1 corresponds to predominant horizontal orientation of ice matrix (oblate inclusions), and α =1 corresponds to isotropic

distribution of ice matrix.150

2.5 Requirements for a consistent elasticity tensor parameterization

The parametrizations and model presented above are all designed for a specific range of validity. To demonstrate the require-

ments for a consistent parametrization valid for snow, firn, and ice we provide an overview of all models presented above

evaluated by using their free parameters as originally published. Figure 1 shows the C33 component as a function of volume

fraction for all models. For the formulations including anisotropy, three different anisotropy ratios α= 0.7,1,and1.6 were155

evaluated and the corresponding spread in elastic properties is shown as shaded area for these models.

Due to its simple power law dependence on density, the G parametrization (Gerling et al., 2017) exceeds even the modulus

of ice (black square for φ= 1). A very similar behavior is found for the isotropic ZC (Srivastava et al., 2016) variant, demon-
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strating the consistency of G and ZC for low volume fractions but the failure for high volume fraction. In addition ZC shows

an influence of anisotropy that increases monotonically with ice volume fraction, which is also unphysical since in the limit of160

φ→ 1 the microstructure must tend to an isotropic state. In contrast the U bound correctly approaches the ice limiting value of

ice (blue square) while the influence of geometrical anisotropy tends to zero. In addition, the U formulation agrees also in the

vicinity of φ= 1 with the prediction of dilute dispersion of spherical (DDS) cavities. In contrast, the agreement of U and DDS

for φ > 0.8 with the isotropic Kohnen formulation demonstrates the validity of this asymptotic behavior for ice, while in turn

KOH naturally fails for low volume fractions (snow) lying outside its range of applicability.165

Figure 1. Illustration of the elastic modulus C33 as a function of volume fraction φ for all discussed models: density based parameterization

proposed by Gerling et al. (2017) (CG
33) (see Eq. (4)), band of values (CZC

33 ) predicted by Srivastava et al. (2016) (see Eq. (8)), band of values

(CU
33) predicted by the Hashin-Shtrikman upper bound (see Eq. (9)), elastic modulus for dilute dispersions (CDDS

33 ) (see Eq. (6)) and for

Kohnen (1972) empirical relationship (CKOH
33 ) (see Eq. (5)) are shown as a function of the volume fraction (φ) with continuous lines. The

black square represents the maximum value of the elastic modulus in C33 direction for ice volume fraction φ= 1. The shaded area for the

anisotropic models represents the range of values between the two aspect ratios α= 1.7 and α= 0.6.

2.6 The remedy: Matching asymptotics

The best of all existing models can be combined in a single model by constructing an empirical transition model that i)

increases as a power law for low volume fraction ii) includes anisotropy but with vanishing influence when approaching ice

iii) approaches the limiting behavior of dilute air bubbles for low porosity. Due to the properties of the HS bounds (correct

limiting behavior of the bounds for low and high volume fraction, rational function for intermediate volume fractions) this can170
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be achieved by using a transformation of the normalized HS bound in the following form

CPW
ij = C ice

ij fij

(
C U
ij

C ice
ij

)
, (11)

with an empirical transition function fij : [0,1]→ [0,1] for each component of the elasticity tensor. Given that the HS bound

approaches the dilute dispersion limiting behavior for x→ 1 (Hashin and Shtrikman (1962)), the transition functions must

obey fij(x)∼ x for x→ 1. Given further, that the modulus increases as a power law for lower volume fractions, the scaling175

function must behave as fij(x)∼ xβ for x→ 0. These two asymptotics can be matched in the following empirical form

fij(x) =
xβ

ξ(1−x) +xβ−1
∼




xβ/ξ, for x→ 0

x, for x→ 1,
(12)

which has the correct asymptotic behavior and contains only 2 free parameters. The free parameter ξ acts thus on one hand

as a modification of the prefactor in the power law and at the same time as the transition scale to control the crossover to

f(x)∼ x. Eq. (11) and Eq. (12) together with Eq. (9) constitutes our empirical model that depends on density and anisotropy180

in a physically consistent way. The corresponding tensor components are henceforth referred to as CPW
ij which will be analyzed

and parametrized in the following from snow, firn, and ice tomography samples and finite element simulations of the elastic

modulus.

3 Material and computational methods

3.1 Tomography samples185

For the parametrization of snow elastic properties we used 395 microstructure images of snow, firn, and bubbly ice obtained

with the help of X-ray tomography (µCT). Samples are taken from previous work and comprise laboratory, Alpine, Arctic, and

Antarctic snow and ice. A brief description is given in Table 1. We considered the full range of porosities ranging from 0.06 -

0.93, anisotropy ratios α ranging from 0.45-1.88.
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Table 1. µCT samples used for the parameterization of the elasticity tensor.

Sample name (No.

of. samples)

Description φ range Anisotropy α

range

obtained from

TS-TGM2 (45) Temperature gradient time series 0.21 - 0.25 0.76 - 1.18

TS-TGM17 (49) Temperature gradient time series 0.30 - 0.32 0.90 - 1.15

TS-DH1 (6) Metamorphism box time series 0.175 - 0.31 0.74 - 1.45

TS-DH2 (1) Metamorphism box time series 0.40 1.575 Löwe et al. (2013)

TS-ISO1 (10) Isothtermal time series 0.16 - 0.26 0.69 - 1.00

TS-ISO5 (10) Isothtermal time series 0.16 - 0.24 0.65 - 1.04

Alp-DIV (41) Various Alpine samples 0.06 - 0.39 0.56 - 1.67

Arc-EGRIP (187) Snow core 0.24 - 0.66 0.45 - 1.87 Montagnat et al. (2020)

Ant-B34 (4) Firn core 0.43 - 0.93 1.07 - 1.11 Schlegel et al. (2019)

Ant-B54 (32) Firn core 0.60 - 0.80 1.00 - 1.17

Ant-Lock-In (10) Ice core 0.85 - 0.93 1.05 - 1.12 Fourteau et al. (2019)

3.2 Correlation functions190

We use tomography images of snow to compute the correlation functions of snow microstructures to calculate the anisotropy.

As dry snow is a two-phase composite material consisting of air and ice phase, the indicator function I(x) accounts for the

spatial distribution of ice and air and is denoted by

I(x) =





1 ifx ∈ ice

0 ifx ∈ air.
(13)

The two-point correlation function χ(r) (Torquato, 2002b) entails information about the phase correlation of the end points of195

vector r and is defined by

χ(r) = 〈I(x+ r)I(x)〉−φ2 . (14)

We assume a statistically homogeneous material, where χ is independent of the reference point x ∈ R3. χ(r) is computed from

3D images via Fast Fourier transformation (Krol and Loewe, 2016; Löwe et al., 2013). Correlation lengths `z, `x and `y are ob-

tained by fitting χq(r) along the cartesian coordinate axes q = x,y, and z to an exponential function χq(r) = χq,0 exp(−r/`q).200

From this the geometrical anisotropy parameter is defined by α= `z/`xy .

3.3 Geometrical fabric tensor

Srivastava et al. (2016) showed that the choice of the fabric tensor M computed either by mean intercept lengths (MIL), star

length distributions (SLD), and star volume distribution(SVD) methods did not play a significant role in the computation of the
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effective elasticity tensor of snow. Therefore we use the depolarization tensor M∗ given by Torquato (2002a), which is based205

on two-point correlation lengths to estimate the structural anisotropy of the microstructure. Using M∗ allows us to connect to

previous work (Löwe et al., 2013; Montagnat et al., 2020; Calonne et al., 2015; Leinss et al., 2016) where this orientation tensor

was employed to determine the anisotropic effective thermal conductivity and permittivity of snow. Analogous to MIL,M∗ is

the symmetric depolarization tensor of a 3-dimensional ellipsoid with the eigenvalues in principle axes frame given by elliptical

integrals, and its trace is unity (Torquato, 2002a). In the case of transverse isotropy around the z-axis, the depolarization tensor210

computed from two-point correlation function χ(r) reduces to

M∗ =




Q(α) 0 0

0 Q(α) 0

0 0 1− 2Q(α)


 . (15)

The definition of the function Q(α) in terms of anisotropy ratio α is given in Torquato (2002a, Eq. 17.30 and 17.31).

3.4 FEM simulations

FE simulations were performed using the code from Garboczi (1998) on all the CT images to determine the elasticity tensor of215

the snow microstructure. For these simulations we assumed elastically isotropic ice with a shear modulus G ice = 3.52 GPa and

bulk modulus K ice = 8.9 GPa. We performed FE simulations for 5 load states. For each load state we obtain 6 equations by

using σ−C : ε= 0 in Voigt notation. All equations resulting from all load states are simultaneously solved for the 5 unknown

tensor components by using a linear least squares optimization. The obtained values are denoted by CFEM
ij .

3.5 Reparametrization of existing models220

From the simulations we also reparametrize existing models from Sec. 2. The unknown parameters in the Gerling model (aij

and bij), Zysset-Curnier model (λ,λ
′
,µ,k and l) and the present model (ξ and β) are obtained by performing least squares

regression on the simulated elasticity tensor components against the models from Sect. 2.2. The free parameters of all models

were adjusted using a log-transformation of the elastic tensor component, as it was done in (see Srivastava et al., 2016; Zysset,

2003).225

4 Results

4.1 Present study parameterization

Figure 2 shows an overview of all results by plotting the simulated elasticity components CFEM
ij (different rows) against ice

volume fraction (column 1), the HS upper bound (column 2) and the normalized representation from Eq. (11). This shows

that the scatter of the simulated elasticity tensor components (CFEM
ij ) is maximal when plotted as a function of the ice volume230

fraction φ, and that this scatter is reduced when plotted as a function of the HS upper bound CU
ij instead .
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Next, we use the the improved correlation between CFEM
ij and CU

ij to derive the parameterizations for each component

according to Eq. (12), shown as the black curves. Note that the non-linear transition behavior from the power law increase at

low densities when approaching the value of ice is well captured for all the components. The performance however slightly

differs for individual tensor components and is the best for C33. We also stress that the data collapse for all tensor components235

in the normalized plot indicates that only two parameters are sufficient to obtain a decent picture of elasticity from Eq. (11).
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Figure 2. Simulated elasticity components CFEM
ij (different rows) are shown as a function of volume fraction φ (left column), as a function of

HS upper boundCU
ij (middle column) and in the normalized versionCU

ij/C
ice
ij (right column). The black curve represents the parameterization

derived for all the components (2 parameters each). For definitions of sample names, we refer to Table 1.
12
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4.2 Comparison to previous parameterizations

To examine the performance of the parameterization derived by fitting either individual components (see Fig. 3 top row)

or fitting all the components of elastic modulus simultaneously (see Fig. 3 bottom row), we show a scatter plot of the C33

component of the elastic modulus evaluated from numerical simulations vs. the three parameterizations: density-based from240

Gerling (left), Zysset-curnier (middle) and the present study parameterization (right). A detailed overview of the parameters

obtained for different parameterization and their coefficient of regression is given in Table 2. Note that these parameters differ

from the values obtained in the original publication as the models were re-adjusted to fit our FEM simulations as explained in

Sec. 3.5.

Figure 3. Comparison of simulated elastic modulus (CFEM
33 ) to the Gerling et al. (2017) (G) density-based power law model given by Eq. (4),

Zysset-curnier (ZC) model Srivastava et al. (2016) given by Eq. (8) and presentwork parameterization (PW) given by Eq. (12) (from left to

right). The given R2 values correspond to the performance of the parameterization by fitting individual (top) or all components (bottom),

respectively. Table 1 provides detailed definitions of sample names.
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Table 2. Parameters and regression coefficient obtained from least-square regression of the simulated elastic modulus employing different

models on the entire data set.

Isotropic parameterization fitted for all components Gerling et al. (2017)

aij bij R2

CG
ij 7.01 4.13 0.76

Isotropic parameterization fitted for each component (Gerling et al., 2017)

aij bij R2

CG
11 8.61 3.82 0.993

CG
12 2.86 4.22 0.997

CG
13 5.32 4.46 0.997

CG
33 27.47 4.26 0.980

CG
44 1.34 3.88 0.978

Zysset-Curnier parameterization (Srivastava et al., 2016)

λ λ
′

µ

C ZC
ij 0.66 0.21 0.19

k l R2

C ZC
ij 4.08 -1.18 0.952

the present study parameterization fitted for all components

β ξ R2

C PW
ij 3.07 0.405 0.991

the present study parameterization fitted for individual components

β ξ R2

C PW
11 3.07 0.49 0.988

C PW
12 3.05 0.45 0.988

C PW
13 3.12 0.30 0.996

C PW
33 3.32 0.18 0.998

C PW
44 3.15 0.46 0.992
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4.3 Comparison at high ice volume fractions245

The improvement of the prediction of the elastic modulus using the present work parameterization C PW
33 at high-volume frac-

tion is compared with elastic modulus determined by Kohnen (1972) formula, where the P-wave velocity of ice v ice
p is once

calculated by using geometrical elastic modulus of ice (v ice
p = (C ice

33/ρ
ice)0.5) and with the literature P-wave velocity of ice

v ice
p = 3900 ms−1 (Diez, 2013). This comparison is depicted in Fig. 4. We see that C KOH

33 based on the elastic modulus of ice

used in this work exactly approaches the correct limit, and is in line with our parameterization C PW
33 and the limit of elastic250

modulus for bubbly ice C DDS
33 . This validity of the C PW

33 , C KOH
33 , and C DDS

33 parametrization at high density is also confirmed by

their agreement with the simulated C FEM
33 values.

Figure 4. Comparison of present work parameterization C PW
33 with elastic modulus C KOH

33 determined by Kohnen (1972) empirical formula

based on P-wave velocity and density (P-wave velocity is determined from structural elastic modulus of ice), elastictiy modulus C KOH
33

obtained by taking P-wave velocity as 3900 ms−1 Kohnen (1972) and with upper bound of elastic modulus for dilute dispersion (C DDS
33 ).

The black square represents the elastic modulus of ice (C ice
33). The black dots correspond to simulations in this density regime (C FEM

33 ).

4.4 Elasticity-depth profile

Another view on the results is provided by comparing the new parametrization to the other parametrizations with their published

fit parameters for the only profile (EastGrip) contained in our data. In Fig. 5 the depth-profile of estimated elastic modulus is255

plotted. The elastic modulus determined from the present work parameterization (C PW
33 ) closely follows the simulated elastic

modulus. Conversely the prediction of elastic modulus based on the Kohnen (1972) empirical relationship as a function of

P-wave velocities and density cannot be used outside it range of validity (for reasons discussed in Fig. 1). The Gerling et al.
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(2017) power-law parameterization gives the right prediction only close to the surface where the low anisotropy values α < 1

(Montagnat et al., 2020) are consistent with the horizontal anisotropy that was present in the snow samples from (Gerling260

et al., 2017). For deeper snow the geometrical anisotropy is considerably larger. Note that the volume fraction of Arc-EGRIP

microstructure varies from 0.25-0.66. In this range both (C PW
33 ) and (C ZC

33 ) demonstrate a good performance (see Fig. 3) which

is also seen in the error-depth profile of elastic modulus depicted in Fig. 5. The error is calculated by (C FEM
33 −C PAR

33 )/C FEM
33 .

Where C PAR
33 is the parameterization considered for the evaluation of error plot. The error for ZC becomes larger for the highest

densities (for reasons discussed in Fig. 1).265

Figure 5. Top: Comparison of elastic modulus calculated from FE simulations for EastGRIP samples to Gerling et al. (2017) parameteriza-

tion, Kohnen (1972) empirical parameterization, presentwork parameterization, Srivastava et al. (2016) parameterization plotted as a function

of depth. Bottom: Error plot which is given by the difference between the simulated elastic modulusC FEM
33 and parameterized elastic modulus

C PAR
33 normalized by simulated elastic modulus C FEM

33 .

4.5 Relative influence of geometrical anisotropy and density

While elasticity of snow, firn, and ice is predominantly controlled by density, we can now quantify the additional controls of

geometrical anisotropy. To assess the distribution of geometrical anisotropy of the entire data set, we plot structural anisotropy

parameter α= `z/`xy for all 395 microstrucutures as a function of ice volume fraction in Fig. 6(a). The highest anisotropy

parameter (α= 1.87,φ= 0.39) is registered by Arc-EGRIP sample.270

The potential error induced by assuming isotropy (α= 1) in determining parameterization of elastic modulus is shown in

an error plot in Fig. 6 (b). Here the error (CPW
33 (φ,α)−CPW

33 (φ,1)/CPW
33 (φ,1) is shown as a two-dimensional contour plot as a
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function of ice volume fraction and the anisotropy parameter α. The relative error gives the percentage error induced between

the elastic modulus computed as a function of anisotropy and as a function of isotropy, with zero relative error by for isotropic

structures.275

Figure 6. (a): Structural anisotropy of the microstructures (α) is plotted as a function of volume fraction φ. Isotropy is represented by dashed

line for α= 1. (b): Contour plot showing CPW
33 (φ,α)−CPW

33 (φ,1)/CPW
33 (φ,1) as a function of anisotropy and volume fraction. The two black

squares represents the relative error at the maximum and minimum anisotropy ratio α= 1.87 and α= 0.45 which occur in the present data

set in (a). The bar represents the percentage of relative error computed for different anisotropic microstructures considered. Table 1 provides

the description of the samples.

4.6 Comparison of geometrical and crystallographic anisotropy

To assess the geometrical anisotropy in reference to the crystallographic anisotropy when determining the elastic properties of

snow, firn, and ice for given ice volume fraction, we show the geometrical Thomsen parameter εgeom (see Eq. (3)) in Fig. 7.

For comparison we also show the maximum crystallographic anisotropy that can be theoretically obtained, which is the known

value of mono-crystalline ice at zero porosity (φ= 1) given by εcryst =−0.0356 (Petrenko and Whitworth, 1999). The expected280

(but unknown) decay of εcryst for φ < 1 is shown as a schematic (cf. discussion).
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Figure 7. Geometrical and crystallographic Thomsen parameter, εgeom and εcryst, plotted as a function of volume fraction φ to show the

predominant influence of anisotropy (geometrical and crystallographical) on elastic properties. The red dashed line illustrates a schematic

representation of the expected behavior of crystallographic anisotropy εcryst for φ < 1. Sample name descriptions are given in Table 1.

5 Discussion

5.1 Summary of main results

The key advantage of the proposed empirical parameterization is the applicability to the entire range of naturally occurring ice

volume fraction to predict the effective elastic modulus (see Fig. 3). Previous parametrizations of the elastic modulus, based285

either on density alone (Eq. (4), Gerling et al. (2017)) or on density and anisotropy (Eq. (8), (Srivastava et al., 2016)), can

signifincantly overestimate the elastic modulus when applied outside of their validity range (see Fig. 1). The advantage of HS

bound (Eq. (9)) is that it complies with the limiting behavior of bubbly ice (see Sec. 2.6) and does not overestimate the elastic

properties as it approaches high volume fraction and incorporates the anisotropy (see Fig. 1). For constructing the empirical

parameterization we exploited the fact that the elastic modulus should asymptotically tend to the behavior of randomly diluted290

spheres, reflecting the fact that low-porosity ice from ice cores mainly consist of convex (sphere like) air cavities (Fourteau

et al., 2019). The validity of this assumption is reflected by Fig. 4, which shows that numerical simulations coincide very well

with the theoretical prediction of elasticity for dilute dispersions of spherical cavities (see Eq. (6)).

Our parametrization of the elastic modulus is a good alternative to computationally expensive FE methods. Although other

theoretical approximations such as the self-consistent (SC) approximation were previously employed by (Wautier et al., 2015)295

to predict the effective elastic properties and by (Calonne et al., 2019) to predict the effective thermal conductivity for the entire

range of densities, SC approximations are based on implicit equations that need to be solved (Torquato, 2002a). Torquato (1998)

also showed that the SC give inadequate approximation of effective moduli of dispersions and overestimate the effective moduli

in comparison to rigourous bounds. In contrast rigorous bounds such as Hashin-Shtrikman are explicit formulas.
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It is notable that the range of elastic modulus varies for each tensor component (see Fig.2 (b)) plotted as a function of Hashin-300

Shtrikman bound. Hence we parameterize elastic modulus for each component shown in Fig. 2 (column 3), as described in

Sect. 2.6 using Eq. (12) and the two parameters ξ and β for each component are given in Table 2. We also observed that all five

components collapsing onto a single curve when normalizing the simulated values by ice moduli (C FEM
ij /C ice

ij ) and plotting

them as a function of normalized HS upper (C U
ij/C

ice
ij ). This helped in the prediction of all five components of the elastic

modulus with only two parameters in contrast to five parameters given by Zysset-curnier parameterization Srivastava et al.305

(2016) for an orthotropic elasticity tensor.

5.2 Choice of the geometrical fabric tensor

Srivastava et al. (2016) demonstrated that the choice of the fabric tensor does not affect the prediction of anisotropy. Hence

the MIL fabric tensor, employed by the Zysset-Curnier parameterization in Srivastava et al. (2016), was replaced here by

symmetric depolarization tensor (orientation tensor) M∗. In this way, the current elasticity parametrization involves exactly310

the same microstructure parameter (φ,α) as previous permittivity or thermal conductivity parametrizations (Leinss et al.,

2016; Löwe et al., 2013). Weng (1992) evaluated bounds using a similar depolarization tensor based on two-point correlation

functions assuming ellipsoidal symmetry. Their results were consistent with those of the Hashin-Shtrikman bounds evaluated

by Eshelby tensor.

We note that the choice of the fabric tensor though has an impact on the sign of the fit parameter (l) in the Zysset-curnier315

parameterization, yielding a negative value here in contrast to Srivastava et al. (2016). This can be explained because our depo-

larization tensorM∗ given by Eq. (15) yields a eigenvalue zero in the vertical direction for a vertically oriented microstructure.

In contrast, the MIL fabric tensor is represented by 〈mi⊗mj〉, with a local directormi and divided by it’s trace. If the orien-

tation is in mi direction then the corresponding eigenvalue in this direction is maximized. Therefore the sign of the l parameter

is reversed. A limitation of the MIL fabric tensor is however that it is not able to detect interfacial anisotropy: Odgaard (1997)320

evaluated a two-dimensional "Swiss cheese" microstructure where the MIL analysis predicted an isotropic geometry despite

the obvious, anisotropic arrangement of the spheres. The result of the analysis was influenced by the isotropic interfaces be-

tween the phases. Similar results were also observed by Klatt et al. (2017) for a Boolean model, where MIL resulted a circle,

with no signatures of anisotropy. MIL determination based on standard line or intersection counting techniques to determine

MIL are time consuming and sensitive to noise (Moreno et al., 2012).325

5.3 Performance of the parameterization

Overall, our parameterization shows an excellent performance (R2 = 0.99) when fitting all components simultaneously with

2 parameters in comparison to previous parameterizations Srivastava et al. (2016) (volume-fraction and fabric-dependent) and

Gerling et al. (2017) (volume-fraction-dependent), which yielded the coefficient of determination R2 = 0.76 and R2 = 0.952,

respectively (see Table 2 and Fig. 3). The highest improvement over density based parametrizations is achieved for the C33330

component for the (TS-TGM2, TS-TGM17, and Arc-EGRIP) samples, which becomes apparent when plotted as a function of

HS upper bound or volume fraction (see Fig. 2). All of these samples have an ice matrix predominantly oriented in z-direction
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(see Fig. 6 (a)) with the anisotropy ratio α > 1. Such vertically oriented structures are generated by strong temperature gradient

metamorphism (Calonne et al., 2012; Löwe et al., 2013; Leinss et al., 2020) occurring in the snow, firn, and ice. This is

evident for temperature gradient time series (TGM2 and MMTO17) from Fig. 6 (a), where we see the change from a horizontal335

orientation of ice matrix into a vertical orientation. The improvement of the prediction of the elastic modulus mainly in z-

direction is consistent with previously derived properties such as thermal conductivity for snow (see, Löwe et al., 2013).

EastGRIP (Arc-EGRIP) samples extracted from the firn in Greenland also display similar kind of geometrical anisotropy in

the vertical direction (Montagnat et al., 2020).

A possibility to conceptually improve the present parameterization would be to employ additional information of the mi-340

crostructures e.g. through three-point bounds Torquato (2002a); Roberts and Garboczi (2002); Milton and Phan-Thien (1982).

However three-point bounds involve three-point correlation functions which are computationally complex and may still miss

relevant details for the estimation of the elastic modulus Beran and Molyneux (1966).

Using the new parametrization it is possible to assess the maximum error in the prediction of elasticity if anisotropy was

not taken into account (see Fig. 6(b)). As the relative error is not the same for microstructures with vertical and horizontal345

orientation of ice matrix, the error plot is non-symmetric inα (see Fig. 6(b)). The relative error of the elastic modulus for vertical

ice matrix orientation (TS-TGM2, TS-TGM17 and Arc-EGRIP) (α > 1) (see Fig. 6(b), top half) is larger than 100%. The

relative error for horizontal orientation of ice matrix (α < 1) seen for φ between snow to ice is up to -90%. From Fig. 6(a) and,

6(b) it is clear that for intermediate volume fractions in the range 0.3< φ < 0.5, very different anisotropy values are possible

for a similar density. Using the extreme values from Fig. 6(b) the prediction of elastic modulus solely as a function of φ could350

miss variations up to 200%. For φ→ 1, the relative error must approach zero, since for vanishing porosity (polycrystalline) ice

becomes geometrically isotropic.

5.4 Comparison of geometrical and crystallographical anisotropy

In Fig. 6(a) and Fig. 7 we see the typical evolution of the geometrical anisotropy in snow, firn, and ice and its survival up

to high densities. Initially, snow exhibits a horizontal orientation of ice matrix (Leinss et al., 2016). As the volume fraction355

increases from snow to firn, we observe the transition of the orientation to the vertical direction. This change is a result of

temperature gradient metamorphism, which can be easily confirmed from the temperature gradient metamorphism experiments

(TS-TGM2 and TS-TGM17), and also from the Arc-EGRIP dataset. The existence of geometric anisotropy in polar snow are

well known (Fujita et al., 2014; Moser et al., 2020) and can be quantitatively related to temperature gradient metamorphism

(Montagnat et al., 2020). When the volume fraction of ice increases further from firn to bubbly ice, the microstructures relax to360

a geometrically isotropic state. This is a consequence of gravitational settling and densification of snow (Leinss et al., 2020).

However we infer from Fig. 6 (a) that the vertical geometrical anisotropy generated near surface survives beyond the bubble

close-off transition around φ≈ 0.92 that underlies the Ant-Lock-In data, as disucssed in (Fourteau et al., 2019). This raises the

question at which point exactly the crystallographic anisotropy will become the dominant type of anisotropy.

To this end we have quantified the geometrically elastic anisotropy by deriving the corresponding Thomsen parameter εgeom365

for the entire range of ice volume fraction (see Fig. 7). This clearly reveals that the geometrical anisotropy is dominating
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in snow and firn for ice volume fraction φ < 0.7 in our data. For bubbly ice the situation is a bit more complicated. The

crystallographic Thomsen parameter of ice εcryst shown in Fig. 7 is only valid for φ= 1, where the geometrical Thomsen

parameter εgeom must vanish. However, it can be expected that in the range 0.7< φ < 1 the geometrical and crystallographic

anisotropy are of similar magnitude since the crystallographic Thomsen parameter εcryst must decay from its ice value when370

increasing the porosity. Such an influence of very low porosity on the crystallographic fabric is also implied by the results of

(Hellmann et al., 2021). The expected behavior is shown as a schematic line in the inset of Fig. 7). In principle this curve could

be actually computed by assuming a geometrically isotropic air phase (spherical bubbles) in a crystallographically anisotropic

ice phase and employing the theoretical work from (Sevostianov et al., 2005). However typos in the equations prevented us

from doing so.375

For microstructures in the volume fraction range 0.7< φ < 1, it may be thus important in the future to consider concurrent

effects of crystallographical and geometrical anisotropy, which is presently inexistent. It is important to know the dominant

anisotropy (geometrical or crystallographical) for a given volume fraction for the prediction of elastic properties. Previous

studies mostly consider crystallographic anisotropy which may however become dominant only very close to φ= 1

6 Conclusions380

Using a transformation of the anisotropic Hashin-Shtrikman bounds, we derived a new closed-form parametrization for the

effective elasticity tensor as a function of volume fraction and geometrical anisotropy applicable from fresh snow to bubbly ice.

Thereby we extend the set of parameterizations of physical parameters with a similar focus on the full range of volume fractions

(Calonne et al., 2019; Picard et al., 2022). We have demonstrated the advantages over previous elasticity parametrizations

in view of performance and the correct asymptotic behavior for bubbly ice. Given the distribution of naturally occurring385

geometrical anisotropy, the uncertainty range of elastic moduli predictions is up to 200% for intermediate volume fractions of

0.3< φ < 0.5 if only density was considered in the parametrization.

The new parametrization constitutes a significant simplification for a use in different applications in cryospheric sciences.

In particular we seek to trigger new microstructure retrievals through advanced anisotropic inversion methods of seismic data

(Wu et al., 2022). Along these lines, our results shed new light on the relative importance of the two different types of elastic390

anisotropy (crystallographic, geometrical) in snow and firn that may influence the interpretation of seismic measurements

(Schlegel et al., 2019). The geometrical anisotropy is clearly dominating the crystallographic anisotropy for φ < 0.7, and

must be taken into account when discussing anisotropy in near surface seismics (Chaput et al., 2022). While the geometrial

anisotropy quickly decays with depth, remainders still persists down to the close-off depth and it remains to be investigated in

the future how concurrent fabrics (geometrical and crystallographic) will elastically interact in bubbly ice.395

Data availability. The data will be made available after acceptance.
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Appendix A: Eshelby tensor

The Eshelby tensor S is defined in terms of elliptical integrals. For the case of a spheroidal inclusion with semi-axis given

in terms of correlations lengths `x = `y = a and `z = b, with symmetry axis aligned in z-direction embedded in a transverse

isotropic comparison phase results in transverse isotropic Eshelby tensor and is defined in terms of with the components of400

Sijkl given by (Torquato, 2002a; Parnell and Calvo-Jurado, 2015):

S1111 = S2222 =
3

8(1− v1)
α2

α2− 1
+

1
4(1− v1)

[
1− 2v1−

9
4(α2− 1)

]
q,

S3333 =
1

2(1− v1)

{
1− 2v1 +

3α2− 1
α2− 1

−
[

1− 2v1 +
3α2

α2− 1

]
q

}
,

S1122 = S2211 =
1

4(1− v1)

{
α2

2(α− 1)
−
[

1− 2v1 +
3

4(α2− 1)

]
q

}
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S1133 = S2233 =
1
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{
−α2
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+

1
2
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3α2
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3
2(α2− 1)

]
q

}
,
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1
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2
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1− 2v1−
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q
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,

(A1)

with Poisson ratio of the comparison material given by v1, α is the aspect ratio of spheroid given in terms of correlation lengths

(`z/`xy) and q is defined by

q =





α

(α2− 1)3/2
[α(α2− 1)1/2− cosh−1α], α≥ 1,

α

(1−α2)3/2
[cos−1α−α(1−α2)1/2], α≤ 1,

(A2)405

Several limits of the Eshelby tensor for transverse isotropic materials can be derived. For ice matrix orientation with needle-

shaped structures (α→∞, q = 1), the Eshelby tensor reads

S1111 = S2222 =
5− 4v1

8(1− v1)
, S3333 = 0

S1122 = S2211 =
4v1− 1

8(1− v1)
, S1133 = S2233 =

v1
2(1− v1)

,

S3311 = S3322 = 0, S1212 =
3− 4v1

8(1− v1)
, S1313 = S2323 =

1
4
.

(A3)

For inclusion with disk-shaped structures (α= 0, q = 0), the components of Eshelby are then given by

S3333 = 1, S3311 = S3322 =
v1

1− v1
, S1313 = S2323 =

1
2
. (A4)410
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